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We study the Parisi functional, appearing in the Parisi formula for the pressure of
the SK model, as a functional on Ruelle’s Probability Cascades (RPC). Computation
techniques for the RPC formulation of the functional are developed. They are used to
derive continuity and monotonicity properties of the functional retrieving a theorem
of Guerra. We also detail the connection between the Aizenman-Sims-Starr variational
principle and the Parisi formula. As a final application of the techniques, we rederive
the Almeida-Thouless line in the spirit of Toninelli but relying on the RPC structure.
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1. INTRODUCTION

The Sherrington-Kirkpatrick (SK) model is a mean-field spin glass system on
configurations σ ∈ {±1}N of N spins with the Hamiltonian

HN (σ ) = −1√
N

∑

1≤i< j≤N

Ji jσiσ j + h
∑

1≤i≤N

σi .

The couplings Ji j are independent standard gaussian variables and h ∈ R.
It is now a theorem that the quenched pressure of the SK model in the

thermodynamic limit, PSK (β, h) := limN→∞ 1
N E J

[
log

∑
σ e−β HN (σ )

]
, is given by

the celebrated Parisi formula (13):

PSK (β, h) = inf
x(·)

{
log 2 + fx (0, h) − β2

2

∫ 1

0
qx(q)dq

}
.
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The infimum is over all increasing, right-continuous functions x : q �→ x(q) on
[0, 1] such that x(0) = 0 and x(1) = 1. At the heart of this formula is the so-
called Parisi functional x �→ fx (0, h) where fx (q, y) is the solution to the partial
differential equation

∂q f (q, y) + 1

2

[
∂2

y f (q, y) + x(q)
(
∂y f (q, y)

)2
]

= 0 (1)

with the boundary condition f (1, y) = log cosh(βy). (10,14)

A different approach in computing the pressure of the SK model was taken
by Aizenman, Sims and Starr (AS2). (2) In this approach, the pressure is expressed
through a general variational principle over random overlap structures (ROSt).
A ROSt is a measure µ on a pair (ξ, Q) where ξ = {ξα}α∈A is a set of weights
labeled byA and Q = {qα,α′ } is a positive semi-definite form onA. The variational
principle uses functionals on ROSt’s of the form

Eµ

[
log

∑
α ξαeψ(ηα)

∑
α ξα

]
(2)

where η is a gaussian field with covariance Q and ψ is a specific function.
As it was pointed out in Refs. 2 and 3, the link between the two approaches

in computing the SK pressure is provided by a particular family of ROSt’s known
as the Ruelle’s Probability Cascades (RPC). In fact, the Parisi formula is retrieved
by restricting the AS2 variational problem to this class of ROSt’s. These ROSt’s
possess two important features. First, their overlap matrix can be represented as
a tree structure, sometimes qualified as ultrametric. Second, these processes are
stable under stochastic shift of a certain kind. This property shall be defined
precisely and be referred to as the quasi-stationarity property.

The goal of this paper is to exhibit specific techniques for spin glass compu-
tations with the RPC’s. The RPC is a natural setting to study the Parisi functional
and its properties and to perform computations relevant to the SK model.

The paper is organized as follows. We first introduce the RPC. We then
precisely define the quasi-stationarity property and give sufficient and necessary
conditions on the stochastic shift for stability. We proceed by studying functionals
on RPC’s similar to Eq. 2 that reduce to Parisi-like functionals. We derive dif-
ferentiation formulas for these functionals which naturally lead to continuity and
monotonicity properties thereby retrieving a theorem of Guerra (6) for the Parisi
functional. Finally, we detail the connection between the AS2 variational prin-
ciple restricted to the class of RPC’s and the Parisi formula for the pressure of
the SK model. As an example of computation for this variational principle, we
prove the instability of the high-temperature solution above the Almeida-Thouless
line following the idea of Toninelli (15) but using the properties of the RPC func-
tionals introduced earlier. It must be emphasized that the key element involved in
most calculations is the quasi-stationarity property of the RPC.



Spin Glass Computations and Ruelle’s Probability Cascades 953

The connection between the RPC’s and the SK model is still to be fully
understood. In particular, the question of whether or not the overlap distribution of
the SK model is supported on ultrametric matrices is open. The quasi-stationarity
property of the RPC seems to be at the core of this question as pointed out in
Refs. 2, 3, 7.

2. RUELLE’S PROBABILITY CASCADES

Ruelle’s Probability Cascades, or RPC’s, are cascades of Poisson point pro-
cesses which carry a natural hierarchal distance between the atoms of the cascade.
The RPC was formulated by Ruelle based on the Generalized Random Energy
Model (GREM) originally defined by Derrida as a limit of finite point processes. (5)

Ruelle’s formulation extends GREM’s to allow continuous branchings or hierar-
chies. (11) In these notes, we are interested in the case of finite number of branching
levels where the definitions of GREM and RPC correspond. Keeping this in mind,
we will often use the word GREM for an RPC with a finite number of branching
levels.

2.1. Probability Measures on [0, 1]

We start by fixing the notation that will be needed in the definition of the
GREM and used throughout the paper.

Let M be the set of probability measures on [0, 1] and Ma ⊂ M, the subset
of atomic measures with finite number of atoms. For later purposes, we also
introduce M<1

a,k , the subspace of Ma with exactly k + 1 < ∞ atoms, one of them
located at 1 and the remaining located on [0, 1). We write M<1

a for
⋃

k∈N
M<1

a,k .
The space M<1

a,k corresponds to the following subspace of [0, 1]k+1 ×
[0, 1]k+1 most commonly used in the spin glass literature. We associate to
x ∈ M<1

a,k the pair (x, q) where x = (xi , i = 1, . . . , k + 1) and q = (qi , i =
1, . . . , k + 1) with the constraints

0 < x1 < x2 < · · · < xk+1 ≡ 1

0 ≤ q1 < q2 < · · · < qk+1 ≡ 1.

We also set q0 = 0. In this notation, qi refers to the position of the i-th atom and
xi = x(qi ).

Throughout these notes, we will identify a probability measure with its dis-
tribution function and write x ∈ M for a distribution function x of a measure
in M. We will be naturally led to endow M with the topology induced by
the L1([0, 1], g′(q)dq)-norm on the distribution functions for a given smooth
function g. It turns out that the topology does not actually depend on g. We refer
to this topology as the L1-topology on M. In fact, the L1-topology is simply the
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weak topology on M (see Appendix A for details). Note that the subset M<1
a is

dense in M in the L1-topology.

2.2. The REM

The building block of the cascade of the GREM is the simple REM point
process.

Definition (REM). Let 0 < x < 1. A REM(x) is a Poisson point process on R
+

with intensity measure xs−x−1ds.

The value of the parameter x = 1 is evidently singular. It will become clear
later that this is the fundamental reason for introducing the subspace M<1

a ⊂ Ma .
Fortunately, we will later consider functionals of the point process that allow a
continuous extension to the case x = 1.

Let ζ = {ζα} be a REM(x). It is not too hard to show that
∑

α ζα < ∞ a.s.
(see e.g. Ref. 11). In particular, ζ is locally finite on (0,∞) and bounded on the
right almost surely. Therefore, it is possible to enumerate the points of a realization
in decreasing order i.e. ζ1 > ζ2 > . . . .

It turns out that the REM possesses an interesting stability property under
stochastic shift. This property is at the root of the techniques and results presented
in this paper. Let ζ be a REM(x). We consider a random variable W on R

+ with
distribution ν such that Eν[W x ] = ∫ ∞

0 wx dν(w) < ∞. A proof of the following
can be found in Proposition 3.1 of Ref. 12.

Proposition 1 (Quasi-Stationarity of the REM). Let ζ = {ζi }i∈N be a REM(x)
and W be as above. Consider {Wi }i∈N iid W -distributed and independent of ζ .
Define the point process ζ̃ := {ζi Wi }i∈N. The following hold

1. Quasi-Stationarity: ζ̃ is a REM(x) scaled by Eν[W x ]1/x , i.e.

ζ̃
D= Eν[W x ]1/xζ.

2. Backward Shift: Let {ζ̃ j } be ordered in decreasing order. Let π : N → N

be the random permutation induced by the random shift, i.e. π (i) = j iif
ζ̃ j = ζi Wi . Then, {Wπ−1( j)} j∈N are iid and independent of ζ̃ with distribution

wx dν(w)

Eν[W x ]1/x
.
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2.3. The GREM

We now construct the GREM process as a cascade or hierarchy of REM’s. We
start by defining the point process associated to a GREM, we then introduce the
overlap matrix induced by the cascade. We choose to identify the class of GREM
processes with the space of atomic measures M<1

a . Therefore, elements of the
class of GREM’s are distinguished by the choice of xl’s but also by the choice of
overlap parameters ql’s. This is a useful identification as functionals over GREM’s
become functionals on a dense subspace of the space M of probability measures
on [0, 1].

Let x ∈ M<1
a,k with atoms at {ql}1≤l≤k+1 and x(ql ) = xl . Recall that qk+1 =

1 and xk+1 = 1. Consider α ∈ N
k , α = (α1, . . . , αk). It is convenient to define,

for l = 0, . . . , k, the truncation α(l) := (α1, . . . , αl). By convention, α(0) = 0.
Consider for each l = 1, . . . , k a collection of independent REM(xl) indexed by
α(l − 1) ∈ N

l−1

(ζ α(l−1), α(l − 1) ∈ N
l−1).

The notation (ζ α(l−1)) j will designate the j-th point of a realization of the process
ζ α(l−1). By the convention α(0) = 0, there is only one process in the collection
l = 1.

We define recursively a hierarchy of point processes {ξα(l)}α(l)∈N
l at levels

0 ≤ l ≤ k as follows: ξα(0) := 1 and ξα(l) := ξα(l−1)(ζ α(l−1))αl . The resulting point
process is then

ξα := ξα(k−1)(ζ
α(k−1))αk .

To keep track on the branching information, it is useful to consider the fil-
tration F ξ = (F ξ

l , 0 ≤ l ≤ k) with F0 being the trivial σ -algebra and F ξ

l =
σ ({ξα(l ′)}α(l ′)∈N

l′ , 0 ≤ l ′ ≤ l). Here, σ (·) designates the σ -algebra generated by
the collection of variables therein.

The overlap matrix of the cascade Q = {qα,α′ }α,α′∈N
k is defined as

qα,α′ := max{ql+1 : for l such that α(l) = α′(l)}.
The overlap matrix is clearly symmetric. Also, if α(1) �= α′(1), then qα,α′ = q1

and qα,α = qk+1 = 1. In addition, the following inequality holds by definition

qα,α′ ≥ min{qα,α′′ ; qα′,α′′ } (3)

for any triplet α, α′, α′′. For dα,α′ := 1 − qα,α′ , the inequality becomes the ultra-
metric inequality: dα,α′ ≤ max{dα,α′′ , dα′,α′′ }. It implies that at least two overlaps
in the triplet must be the same, and the distinct one, if any, must be greater than the
redundant overlap. As we will see later in the construction of the cavity field, the
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overlap matrix is also the covariance matrix of a gaussian field labeled by α ∈ N
k .

In particular, it is positive definite.

Definition (GREM). Let x ∈ M<1
a with atoms at {ql}1≤l≤k and qk+1 = 1 with

x(ql ) = xl and x(qk+1) = 1. A GREM(x) is the pair (ξ, Q) where ξ = {ξα}α∈N
k

is the resulting point process constructed above with parameters xl , 1 ≤ l ≤ k,
and Q = {qα,α′ } is the corresponding symmetric, positive definite matrix with
qα,α′ ∈ {q1, . . . , qk, 1}. Note that, by definition, a GREM(x) is a ROSt.

We stress that the letter ξ will be used for the resulting process ξ = {ξα}α∈N
k

and not for the whole cascade of processes. In particular, ξ does not contain
information on the hierarchy. The information on the hierarchy is encoded in the
labeling α and expressed through the overlap matrix Q.

The point process ξ = {ξα}α∈N
k keeps some regularity features of the REM.

Indeed,
∑

α ξα < ∞ a.s. and ξ is a random Poisson process whose intensity
measure, conditioned on F ξ

k−1, is
∑

α(k−1)∈N
k−1 ξ

xk
α(k−1)xksxk−1ds. These facts are

consequences of basic properties of the REM. Proofs can be found in Ref. 4,
Lemma 2.1.

As for the REM, the summability allows the enumeration of the points of
a realization in decreasing order, i.e. {ξα}α∈N

k = {ξi }i∈N, ξ1 > ξ2 > . . .. This or-
dering induces a random bijection φ : N → N

k where φ(i) = α if ξα = ξi . The
matrix φ−1 ◦ Q ◦ φ = {qφ(i)φ( j)}i, j∈N is now clearly random. We will sometimes
abuse notation and write qi j for qφ(i)φ( j) and Q for φ−1 ◦ Q ◦ φ. The intended
meaning will be clear from the notation and the context. The distribution of the
matrix φ−1 ◦ Q ◦ φ looks intricate at first due to its dependence on the ordering of
the process ξ . It turns out it has a simple form due to Bolthausen and Sznitman. (4)

To illustrate this distribution, we must define the following random equiva-
lence relations on N for each level l, 0 ≤ l ≤ k:

i ∼l j if and only if [φ(i)](l) = [φ( j)](l). (4)

By convention, i ∼0 j for all i, j ∈ N. We write �xl for the partition of N induced
by ∼l , i.e. �xl := N/ ∼l . �xl is obtained by lumping equivalence classes of �xl+1 .
This is because i ∼l j if i ∼l+1 j by the definition of Eq. 4. The distribution of
the sequence of partitions {�xl } is surprisingly simple.

Theorem 2 (Theorems 1.2, 2.2 and Proposition 1.4 in Ref. 4). Define �(t) :=
�e−t . The process �(t), t = 0,− log xk, . . . ,− log x1 < ∞, is a discrete-time
Markov process on the space of partitions of N whose transition probabilities
are defined as follows.

Consider �(n)(s) and �(n)(t), sets of equivalence classes of {1, . . . , n}. De-
fine ks = |�(n)(s)| and kt = |�(n)(t)|. Let �(n)(t) be obtained from �(n)(s) by
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respectively lumping m1,. . . , mkt classes of �(n)(s). Then the transition proba-
bility from �(n)(s) to �(n)(t), s < t , is

P(s → t ; �(n)(s), �(n)(t)) = (kt − 1)!

(ks − 1)!

(
e−t

e−s

)(kt −1) kt∏

l=1

u(ml, e−t/e−s)

where u(1, x) = 1 and u(m, x) = (m−1−x)...(1−x)
(m−1)! .

Moreover, the process �(t) is independent from the normalized point process
{ξi/

∑
i ξi }i∈N.

Given a realization of the equivalence relations ∼l , the overlap of the i-th and
j-th points follows from Eq. (4):

qi j := qφ(i)φ( j) = qmax{l+1: i∼l j}

Clearly, the distribution of the process Q = {qi j } on symmetric, positive defi-
nite matrices depends uniquely on the distribution of the random equivalence
classes given above. As an example of calculation of overlap probabilities using
Theorem 2, we have Px (q12 = ql ) = (xl − xl−1). It is important to note that the
last assertion of Theorem 2 implies that the process Q is independent from the
normalized weights {ξi/

∑
i ξi }i∈N.

2.4. The Cavity Field of the GREM

In this section, we introduce the gaussian fields on the GREM that will appear
in the definition of the functionals of interest on RPC’s.

Definition (Gaussian Field on the GREM). Let (ξ, Q) be a GREM(x) and
g : [0, 1] → R

+, a strictly increasing function in C1([0, 1]) with g(0) = 0. A
gaussian field with covariance function g on ξ is a centered gaussian process
κ = (κα(r ), α ∈ N

k, 0 ≤ r ≤ 1) with covariance

Cov(κα(q), κα′ (q ′)) =
∫ q∧q ′∧qα,α′

0
g′(r )dr = g(q ∧ q ′ ∧ qα,α′ ).

In the case g(q) = q, the field is called the cavity field of ξ and will be denoted
by η. We will write κi for κφ(i), the field of the i-th point of the configuration.

The cavity field η can be constructed explicitly. We consider, for each α(l) ∈
N

l and each 0 ≤ l ≤ k, independent standard brownian motions Bα(l) on [ql , ql+1).
One could think of the brownian motion as attached to each subbranch α(l) of
the cascade. For each α ∈ N

k , we construct the process ηα recursively. We set
ηα(0)(q) = Bα(0) for 0 ≤ q ≤ q1 and ηα(l)(q) = ηα(l−1)(ql) + Bα(l)(q) for ql ≤ q ≤
ql+1. Finally, ηα(q) = ηα(l)(q) where ql ≤ q ≤ ql+1. It is straightforward to check
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that Cov(ηα(q), ηα′ (q ′)) = q ∧ q ′ ∧ qα,α′ . In particular, Cov(ηα(1), ηα′ (1)) = qα,α′

which shows that the overlap matrix Q is positive definite as claimed before. The
gaussian field κ with covariance function g can now be written as a stochastic
integral on η

κα(q) =
∫ q

0

√
g′(r )dηα(r ).

The natural filtration of the cavity field on the tree is Fη
q = σ (ηα(r ), α ∈

N
k, 0 ≤ r ≤ q). It is useful to construct the filtration of a GREM(x) which keeps

track of the information of the cascade of point processes as well as the cavity field
on it. Let F = (Fq , q ∈ [0, 1]) be the right-continuous filtration defined by Fq =
F ξ

l−1 ⊗ Fη
q for q ∈ [ql , ql+1) and for q = 1,F1 = F ξ

k ⊗ Fη

1 . Note that the filtration
is actually continuous at every point except at the points ql where branchings occur.
Also, the σ -algebra Fq contains the information of the branchings strictly above
[ql , ql+1) for q in this interval as symbolized by F ξ

l−1.

Definition. Throughout the rest of this paper, we will write Px for the probability
measure on F1 of a GREM(x) and its cavity field. Ex will denote the expectation.

3. THE QUASI-STATIONARITY PROPERTY OF THE GREM

The quasi-stationarity property of the REM stated in Proposition 1 induces
a similar stability property on a cascade of REM. We now study this important
feature of the GREM process. The stochastic shift at each point will be written as
a function of the gaussian field on the RPC presented in the last section. We also
look at the distribution of the field after a shift. It is modified by the reordering as
it was in the REM case.

We first need to introduce a class of function for which the stochastic shift is
well-defined.

Definition. Let C be the class of functions ψ in C2(R) satisfying

• ψ ′ and ψ ′′ are bounded on R;
• EY [eψ(Y )] < ∞ for any gaussian variable Y .

We remark that EY [exψ(Y )] < ∞ for any 0 < x < 1 (using Jensen’s inequality
applied with the convex function f (y) = y1/x ). Also, C includes the functions
ψ(κ) = log cosh(βκ + h) and ψ(κ) = βκ .

In this section, we are interested in the stability properties of the GREM
under the stochastic shift

ξα �→ ξαe fq (κα (q))
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where κ is a gaussian field on ξ with covariance function g. The family of functions
( fq , q ∈ [0, 1]) is assumed to be contained in the class C. We also assume that the
family is differentiable, i.e. for y fixed, fq (y) is a differentiable function of q.

An example of such a family is the following. Fix x ∈ M<1
a . Let ψ ∈ C and

ψ1 := ψ . For q ∈ [ql , ql+1), we define recursively ψq as

ψq (y) = 1

xl
log Ez

[
exlψql+1 (y+z

√
g(ql+1)−g(q))

]
for 1 ≤ l ≤ k; (5)

ψq (y) = log Ez

[
eψql+1 (y+z

√
g(q1)−g(q))

]
for l = 0

where Ez denotes the expectation over z, a standard gaussian. We dropped the
dependence of ψq on x and g but the reader must keep in mind this dependence.
It is easy to verify that ψq is in C. Moreover, by direct derivation, ψq is seen to
satisfy the differential equation (see e.g. Ref. 13)

∂qψq (y) + g′(q)

2
(ψ ′′

q (y) + xl(ψ
′
q (y))2) = 0

with the continuity condition limq→q−
l+1

ψq (y) = ψql+1 (y). More generally, by using
the condition of continuity and the equation for each interval, the function ψq (y)
actually satisfies

∂qψq (y) + g′(q)

2
(ψ ′′

q (y) + x(q)(ψ ′
q (y))2) = 0

with boundary condition ψ1(y) = ψ(y).
As a matter of fact, the function eψq (y) is the factor E[W xl ]1/xl coming from

the application of the quasi-stationarity property of Proposition 1 to a REM(xl)
with a shift Wα = eψr (y+Yα ), q < r ≤ ql+1, where Yα are independent gaussians
N (0, g(r ) − g(q)).

The family of functions ψq has the property that the GREM distribution
under their associated stochastic shift is invariant up to a random common factor
(labeled by α(0)):

(ξαeψq (κα (q)), Q)
D= (

ξαeψq1 (κα(0)(q1)), Q
)

(6)

for q ∈ [q1, 1]. Indeed, let q ∈ [ql, ql+1]. We write δα(l)(q) := κα(l)(q) − κα(l)(ql).
Note that the δα(l)’s are independent gaussian N (0, g(q) − g(ql)) for each α(l).
Therefore, we can apply the quasi-stationarity to each REM ζ α(l−1):

ξαeψq (κα(q)) = ξα(l−1)
(
ζ α(l−1)

)
αl

eψq (κα (ql )+δα(l)(q))
k∏

l ′=l+1

(
ζ α(l ′−1)

)
α′

l

D= ξα(l−1)
(
ζ α(l−1)

)
αl

Eδα(l)

[
exlψq (κα (ql )+δα(l)(q))

]1/xl

k∏

l ′=l+1

(
ζ α(l ′−1)

)
α′

l

= ξαeψql (κα(ql ))
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where we used the definition of ψql in the last equality. This procedure is applied
successively up to q1 to prove the claim.

Surprisingly, it turns out that the property 6 characterizes the family (ψq , q ∈
[0, 1]).

Theorem 3 (Quasi-Stationarity of the GREM). Let ( fq , q ∈ [0, 1]) be a differ-
entiable family of functions in C. Let (ξ, Q) be a GREM(x) and κ , its gaussian field
with covariance function g. Then the function fq (y) satisfies the above differential
equation for q ∈ [q1, 1] if and only if

(
ξαe fq (κα (q)), Q

) D= (
ξαe fr (κα (r )), Q

)

for all q, r ∈ [q1, 1]. In particular,
(
ξαe f1(κα (1)), Q

) D= (
ξαe fq1 (κα(0)(q1)), Q

)
. (7)

Proof: The sufficiency of the differential equation for stability was proven above.
We prove the necessity. Pick q ∈ [ql, ql+1), l ≥ 1. Choose �q small enough so that
q + �q belongs also to [ql, ql+1). Consider δα(l)(�q) := κα(l)(q + �q) − κα(l)(q)
that are independent gaussian N (0, g(q + �q) − g(q)) for each α(l). Applying
quasi-stationarity, we obtain

ξαe fq+�q (κα (q)+δα(l)(�q)) D= ξα Eδα(l)

[
exl fq+�q (κα (q)+δα(l)(�q))

]1/xl
.

But, by Eq. (3), we also have

ξαe fq+�q (κα(q)+δα(l)(�q)) D= ξαe fq (κα (q)).

As this must hold for all realization of κα(q), we conclude that
Eδα(l) [e

xl fq+�q (y+δα(l)(�q))] = exl fq (y) for all �q. In particular,

lim
�q→0

1

�q

(
Eδα(l)

[
exl fq+�q (y+δα(l)(�q))

] − exl fq (y)
) = 0

if the limit exists. The limit does exist and is easily computed by Itô’s formula

d

dr
Eδα(l)

[
exl fr (y+δα(l)(r ))

] ∣∣∣
r=0

= xle
xl fq (y)

(
∂q fq (y) + g′(q)

2
( f ′′

q (y) + xl ( f ′
q (y))2)

)
= 0

which yields the desired differential equation. �

From now on, we will use the notation ξ̃α for the shifted process ξαeψ(κα (1)).
Consider the random permutation π of N induced by this random shift, i.e.
π (i) = i ′ if ξ̃i ′ = ξi eψ(κi (1)). As in Proposition 1, we are interested in the back-
ward distribution of the random shift. More precisely, we study the distribution of
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the field κ̃:

κ̃ := (κ̃i , i ∈ N) = (κπ−1(i), i ∈ N).

Proposition 4 (Backward Distribution of the Field). Let µ
(n)
Q be the joint

distribution of the gaussian fields κ1,. . . ,κn under Px given the overlap Q and
µ̃

(n)
Q , the distribution of κ̃1,. . . ,κ̃n under Px given Q. Then µ̃

(n)
Q is absolutely

continuous with respect to µ
(n)
Q and

dµ̃
(n)
Q

dµ
(n)
Q

=
k∏

l=0

∏

ī∈{1,...,n}/∼l

Vī

where the product is over the equivalence classes of {1, . . . , n}/ ∼l and

Vī = exlψql+1 (κ̃i (ql+1))

exlψql (κ̃i (ql ))
.

From the form of the distribution, we conclude that κ̃ is independent from
ξ̃ . The last proposition seems abstract at first but will prove extremely useful as it
will allow us to express derivatives of the Parisi functional (and more generally,
of functionals on RPC’s) in a compact way as expectations over the backward
gaussian field.

Proof: We prove the case n = 1. Choose a finite set of t j ’s in [0, 1], j = 1, . . . , J .
We consider the union of {t j } j∈J and {ql}1≤l≤k+1: {ri }i=1,...,N = {t j } ∪ {ql} so
r1 < r2 < · · · < rN . The claim will be proven for n = 1 if for any choice of t j , the
finite-dimensional distributions satisfy

µ̃(1)(κ̃1(t j ) ∈ A j , 1 ≤ j ≤ J ) =
∫

B1

· · ·
∫

BN

k∏

l=0

exl ψql+1 (κ̃1(ql+1))

exl ψql (κ̃1(ql ))
µ(1)(κ̃1(ri ) ∈ dsi , 1 ≤ i ≤ N ).

where Bi = A j if ri = t j and Bi = R otherwise.
Define li as the level l where ri ∈ (ql , ql+1]. By definition, if ri �= ql for any

l then li+1 = li . The key point in the definition of the ri is that the κα(li )’s, given
Fri−1 , are independent. (This would not be true if one does not consider all ql’s in
the definition of ri ’s.)

By Theorem 3, we have that,

ξ̃α(li ) = ξα(li )e
ψri (κα(li )(ri )) D= ξα(li )e

ψri−1 (κα(li )(ri−1)).

By the quasi-stationarity property of the REM (Proposition 1), the backward
distribution of κ1(ri ) given Fri−1 is

exli ψri (κ̃1(ri ))

exli ψri−1 (κ̃1(ri−1))
µ(1)(κ̃1(ri ) ∈ ds|Fri−1 ).
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The joint distribution of the κ̃1(ri ) is therefore

µ̃(1)(κ̃1(ri ) ∈ Bi , 1 ≤ i ≤ N )

=
∫

B1

· · ·
∫

BN

N∏

i=1

exli ψri (κ̃1(ri ))

exli ψri−1 (κ̃1(ri−1))
µ(1)(κ̃1(ri ) ∈ dsi , 1 ≤ i ≤ N ).

If ri �= ql for any l, we noted that li+1 = li . Thus, the factors in the product coming
from these terms cancel out and only the terms in ql remain. The claim is proven
for n = 1.

If n > 1, the same procedure applies. For example, one could pick {t (m)
j } j

where m indexes the points from 1 to n. Then, one considers {ri } = {ql}
⋃

m{t (m)
j }

as before. In this case, at each level l, every equivalence class ī of {1, . . . , n}/ ∼l

picks up a Radon-Nikodym derivative Vī . �

We now state a result on the regularity of the expectations of the field κ̃ that
we will need when studying functionals of the GREM’s. We omit the proof as it is
a direct consequence of the fact that µ̃

(n)
Q is smooth in the parameters xl’s and ql’s.

Corollary 5 (Expectations of the Backward Field). Let x ∈ M<1
a . Consider

(ξ, Q), a GREM(x), with a gaussian field κ . Let Qn be an n × n matrix such that
Px (Qn) �= 0 and define

FQn (x, q) = Ex

[
n∏

i=1

φ(κ̃i (1))
∣∣∣Qn

]

where φ : R → R is a bounded continuous function and q = (q0, . . . , qk) and
x = (x0, . . . , xk) as before. The following statements hold :

1 FQn (x, q) is a continuous function of q;
2 FQn (x, q) is continuous in x j on (x j−1, x j+1), for all 1 ≤ j ≤ k. The limits

limx j →x j−1 FQn (x, q) and limx j →x j+1 FQn (x, q) exists and are continuous
functions of q.

In the last claim, we stress out that the limit of FQn as x j → x j+1 is not equal
to FQn evaluated at (x0, . . . , x j−1, x j+1, x j+1, . . . , xk) and similarly for the limit
x j → x j−1. This is basically because the distribution functions of the approximat-
ing sequence clearly possess one atom more than the limiting distribution function
with x j = x j+1. Therefore, limx j →x j+1 FQn (x, q) differs from the function FQn

evaluated at the limiting distribution function as the product over the number of
atoms appearing in the density of κ̃ in Proposition 3 has an extra factor in the first
case.
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4. THE PARISI FUNCTIONAL AS A FUNCTIONAL ON RPC’S

In this section, we establish that functionals on RPC’s of the form (2) coincide
with Parisi-like functionals on the space M<1

a . The RPC formulation is a natural
framework for deriving properties of such functionals as one can take advantage
of the rich structure of the GREM and of the quasi-stationarity property. This is
useful as it can be sometimes tedious to derive properties from the solution to
the differential Eq. 1. As an example of techniques in the RPC formulation, we
obtain differentiation formulas which lead to the continuity and the monotonicity
of the functional. This result slightly generalizes a theorem of Guerra. (6) Using
continuity, we also exhibit a limit form of the RPC functional in the singular case
x ∈ Ma but x /∈ M<1

a .

4.1. The Parisi Functional

We first define the Parisi functional in a general way. The reader can consult
(Refs. 6,10 and 14) for particular choices of settings. Definition. Let ψ ∈ C

and g ∈ C1([0, 1]), a strictly increasing function such that g(0) = 0. The Parisi
functional P par

ψ,g : Ma → R is defined as P par
ψ,g (x) := fx (0, 0) where fx (q, y) is

the solution to the differential equation

∂q f (q, y) + g′(q)

2

[
∂2

y f (q, y) + x(q)
(
∂y f (q, y)

)2
]

= 0

with the boundary condition f (1, y) = ψ(y). The case ψ(η) = log cosh(βη + h)
and g(q) = q reduces to Eq. (1).

From another perspective, the AS2 variational principle formulation is based
on functionals of the following form Refs. 2 and 3.

Definition. Let ψ and g be as above. The functional Pψ,g : M<1
a → R is defined

by

Pψ,g(x) := Ex

[
log

∑
α ξαeψ(κα (1))

∑
α ξα

]
(8)

where (ξ, Q) is a GREM(x) and κ is a gaussian field on ξ with covariance
Cov(κα(q), κα′ (q ′)) = g(q ∧ q ′ ∧ qα,α′ ). We will write Pβ,h in the special case
ψ(η) = log cosh(βη + h) and g(q) = q.

The main result of the section is the correspondence of these functionals and
the Parisi functionals.
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Theorem 6 (The Parisi Functional on RPC’s). For any x ∈ M<1
a , P par

ψ,g (x) =
Pψ,g(x).

Proof: The quasi-stationarity of the GREM (Theorem 3) implied Eq. (7):

ξαeψ(κα (1)) D= ξαeψq1 (κα(0)(q1)).

By inserting this into Eq. (8), one gets

Pψ,g(x) = Ex [ψq1 (κα(0)(q1))] = ψ0(0)

by definition of ψ0 (Eq. (5)). But ψq (y) is the solution to the differential equa-
tion of the Parisi functional by Theorem 3 again. We conclude that Pψ,g(x) =
P par

ψ,g (x). �

It is worth pointing out that Pψ,g is linear when ψ is.

Proposition 7 (Linearity of Pψ,g). If ψ(η) = βη, then Pψ,g(x) is a bounded

linear functional. Precisely, Pψ,g(x) = β2

2

∫ 1
0 x(q)dg(q).

Proof: We can write κα(1) as a sum of independent increments: κα(1) =∑k
l=0 δα(l) where δα(l) = κα(ql+1) − κα(ql ). We can then apply the quasi-

stationarity to each REM ζ α(l−1) of the cascade:

ξαeβ
∑k

l=0 δα(l) D= eβκα(0)(q1)ξα

k∏

l=1

e
β2

2 xl (g(ql+1)−g(ql ))

where we have used the fact that the Laplace transform of a standard gaussian is

e
λ2

2 . Note that the expectation of κα(0)(q1) is 0 by definition. The claim is proven
by inserting the last equation into Eq. (8) for Pψ,g . �

4.2. Differentiation

How does Pψ,g vary as the position ql of an atom or the weight x(ql ) is
changed? To address this question, we look at the derivatives of Pψ,g(x) with
respect to the parameters xl and ql . It turns out that the x-derivatives are simply
related to the q-derivatives due to the structure of the spaceMa . Both are expressed
as expectations on the backward field κ̃ . For conciseness, we will use the notation
κi ≡ κi (1) for a gaussian field κi at q = 1 throughout the section.
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Proposition 8 (q-Derivatives). Let x ∈ M<1
a with atoms {ql}. The following

differentiation formulas hold:

∂qlPψ,g(x) = −g′(ql )

2
Ex

[
ψ ′(κ̃1)ψ ′(κ̃2)χq12=ql

]
(9)

where κ is a gaussian field on a GREM(x) and χA is the identity function of the
event A. If g(q) = q,

∂qi ∂q jPψ,g(x) = −3

2
Ex

[
4∏

m=1

ψ ′(η̃m)χq12=qi ,q34=q j

]

+ 2Ex [ψ ′(η̃1)(ψ ′′(η̃2) + ψ ′2(η̃2))ψ ′(η̃3)χq12=qi ,q23=q j ]

− 1

2
δi jEx [(ψ ′′(η̃1) + ψ ′2(η̃1))

(
ψ ′′(η̃2) + ψ ′2(η̃2)

)
χq12=qi ] (10)

where η is the cavity field of the GREM(x). In particular, both derivatives are
continuous functions of the ql ’s.

Proof: The continuity of the derivatives follows from the form of the expres-
sion and Corollary 5. For the first derivative, we use the gaussian differenti-
ation formula (25) in Appendix B. The parameter is ql and the covariance is
Ex [κα(1)κα′(1)] = ∑k+1

l=1 g(ql)δqα,α′ ,ql where δq,q ′ = 1 if q = q ′ and 0 otherwise.
Therefore ∂ql Ex [κα(1)κα′(1)] = g′(ql)δqα,α′ =ql for l = 1, . . . , k. Note that the first
term of formula (25) vanishes as qα,α = 1 for all α. Thus, the first derivative
becomes

∂qlPψ,g(x) = −g′(ql )

2
Ex

[∑
α,α′ ξ̃α ξ̃α′ψ ′(κα)ψ ′(κα′)δqα,α′ ,ql∑

α,α′ ξ̃α ξ̃α′

]

where we have used the notation ξ̃α = ξαeψ(κα (1)). After ordering the ξ̃α , we can
write by the definition of κ̃

∂qlPψ,g(x) = −g′(ql)

2
Ex

[∑
i, j ξ̃i ξ̃ jψ

′(κ̃i )ψ ′(κ̃ j )δqi j ,ql∑
i, j ξ̃i ξ̃ j

]
.

Conditioning on ξ̃ and qi j , bearing in mind the independence of κ̃ and ξ̃ from
Proposition 4, one can write the expectation in the r.h.s. as

Ex

[
ψ ′(κ̃1)ψ ′(κ̃2)|q12 = ql

]
Ex

[∑
i, j ξ̃i ξ̃ jδqi j ,ql∑

i, j ξ̃i ξ̃ j

]
.

where we have used the fact that the joint distribution of κ̃i and κ̃ j is the same as the
distribution of κ̃1 and κ̃2 for all i, j . The proof is completed by first recalling that
the shifted normalized process ξ̃i/

∑
i ξ̃i is distributed as the original normalized
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process by the quasi-stationarity property. Moreover, the normalized process is
independent of the overlap matrix {qi j } as it was remarked in Theorem 2. Therefore,
the second expectation above simply becomes Px (q12 = ql) by conditioning on the
normalized weights and by noticing that Px (qi j = ql ) does not depend on i, j for
i �= j . This yields Eq. (9).

The second expression is obtained from formula (26) in Appendix B with
φ(κ) = log

∑
α ξαeψ(κα ) and straightforward derivation. �

Obviously, a formula holds also for a more general g in the case of the second
derivatives. We omit it for the sake of conciseness.

The nice feature of the above derivative formulas is that they explicitly express
the derivatives of the Parisi functional in terms of expectations over the field κ̃

and probabilities on the GREM cascade. Using conditional expectations, we may
rewrite the second derivative formula, e.g. in the case ψ(z) = log cosh(βz + h)
where the identity ψ ′′ + ψ ′2 = 1 holds, as

∂qi ∂q jPβ,h(x) = − 3

2
β4

∑

Q4(qi ,q j )

Px (Q4(qi , q j ))Ex

[
4∏

m=1

tanh (βη̃m + h)
∣∣∣Q4(qi , q j )

]

+ 2β4
∑

Q3(qi ,q j )

Px (Q3(qi , q j ))Ex

[
2∏

m=1

tanh(βη̃m + h)|Q3(qi , q j )

]

−1

2
β4δi j Px (q12 = qi ) (11)

where the sums are over all 3 × 3 and 4 × 4 matrices Q3 and Q4 such
that q12 = qi , q23 = q j and q12 = qi , q34 = q j with Px (Q3(qi , q j )) �= 0 and
Px (Q4(qi , q j )) �= 0. Note in particular that these matrices must satisfy the in-
equality (3).

Corollary 9 (Useful Estimate on the q-Derivatives). Let x ∈ M<1
a with i-th

atom at qi . Let C > 0 be such that |ψ ′| ≤ C. Then

0 ≤ −∂qiPψ,g(x) ≤ C2

2
(xi − xi−1)g′(qi ). (12)

Proof: The upper bound is clear from Eq. 9, the assumption on ψ and the fact
that Px (q12 = qi ) = xi − xi−1. The lower bound is a consequence of

Ex [ψ ′(η̃1)ψ ′(η̃2)|q12 = qi ] = Ex [Ex [ψ ′(η̃1)|Fqi ]
2]

�
The structure of the space Ma enables us to relate the x-derivatives and the

q-derivatives through a simple differentiation scheme. To do so, we need to define
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the measure obtained from x ∈ Ma by transporting a mass δ from an atom at qi

to s ∈ [0, 1].

Definition. Let x ∈ Ma . Let qi be the position of the i-th atom of x , i ≤ k.
Consider δ > 0 and s ∈ [0, 1]. We define xδ,qi →s ∈ Ma as the atomic measure
obtained from x by transporting a mass δ from qi to s. Note that if s = q j for some
j , then xδ,qi →s has k atoms; otherwise, xδ,qi →s has k + 1 atoms.

Proposition 10 (x-Derivatives). Consider x ∈ M<1
a . Then

∂xiPψ,g(x) = 1

2

∫ qi+1

qi

lim
δ→0

Exδ,qi+1→r [ψ ′(κ̃1)ψ ′(κ̃2)|q12 = r ]dg(r ). (13)

In particular, if |ψ ′| ≤ C for some C > 0

0 ≤ ∂xiPψ,g(x) ≤ C2

2
(g(qi+1) − g(qi )).

Proof: The upper and lower bounds are obtained as in Corollary 9 followed by
integration.

For the sake of clarity, we set xδ = xδ,qi+1→r throughout the proof. By
Proposition 8,

−∂rPψ,g(xδ) = δ
1

2
g′(r )Exδ

[
2∏

m=1

ψ ′(κ̃m)
∣∣∣q12 = r

]
.

Here we have used Pxδ
(q12 = r ) = xδ(r ) − xδ(qi ) = δ. The r.h.s. of the above

equation satisfies the fundamental theorem of calculus as a function of r as g′(r )
and Exδ

[
∏2

i=1 ψ ′(κ̃i )|q12 = r ] are continuous functions of r by definition and
Corollary 3 respectively. Moreover, the limit limδ→0

1
δ
∂rPψ,g(xδ) exists and is

bounded thanks to Lemma 5:

lim
δ→0

1

δ
∂rPψ,g(xδ) = 1

2
g′(r ) lim

δ→0
Exδ

[
2∏

m=1

ψ ′(κ̃m)
∣∣∣q12 = r

]
.

The fundamental theorem of calculus and the above limit yield the desired expres-
sion for the right-derivative ∂+

xi
Pψ,g(x):

∂+
xi
Pψ,g(x) = lim

δ→0

Pψ,g(xδ,qi+1→qi ) − Pψ,g(x)

δ

= lim
δ→0

∫ qi+1

qi

−∂rPψ,g(xδ)

δ
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=
∫ qi+1

qi

lim
δ→0

−∂rPψ,g(xδ)

δ
.

The equality of left and right derivatives is checked using the fact that
limδ→0 xδ,qi+1→r = limδ→0 xδ,qi →r and the x-continuity in Corollary 5. �

The simplicity of the differentiation scheme gives a formal approach for
computing derivatives of all orders in x for RPC’s functionals.

4.3. Continuity and Monotonicity

As a direct application of the differentiation formulas, we establish the L1-
continuity and the monotonicity of Pψ,g . This is a theorem due to Guerra (6) that
we prove in a general setting.

The space M has a natural partial ordering. We say that x ∈ M dominates
y ∈ M if x(q) ≥ y(q) for all q ∈ [0, 1]. The terminology refers to the stochastic
dominance of the random variables associated to the distribution functions. A
functional � : M → R is said to be monotone increasing with respect to this
partial ordering if for any x, y ∈ M such that x dominates y, �(x) ≥ �(y).

We start by stating a useful lemma whose proof is straightforward.

Lemma 1. Let x, y ∈ Ma and � : Ma → R. Suppose ∂xi � exists for all x ∈
Ma. Suppose also that the estimate 0 ≤ ∂xi �(x) ≤ C�(g(qi+1) − g(qi )) holds
for some C� > 0 and for a strictly increasing function g ∈ C1([0, 1]) such that
g(0) = 0. Then

�(x) − �(y) ≤ C�

∫ 1

0
max{x(q) − y(q), 0}dg(q). (14)

The theorem of Guerra appeared in Ref. 6 without proofs. A proof can be
found in Ref. 14. In the RPC formulation, it is a basic consequence of the bound
on the x-derivative.

Theorem 12 (Continuity and Mononicity). Let ψ ∈ C such that |ψ ′| ≤ C and
g ∈ C1([0, 1]), a strictly increasing function with g(0) = 0. Then the following
holds:

1. If x, y ∈ M<1
a ,

|Pψ,g(x) − Pψ,g(y)| ≤ C2

2
‖x − y‖L1(g′(q)dq).

In particular, Pψ,g has a continuous extension to the whole set M in the
L1-topology (and so in the weak topology).
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2. Pψ,g is monotone increasing on M.

Proof: The bounds of Proposition 10 satisfy the assumptions of Lemma 11. The
estimate of the first claim follows from Eq. (14). The L1-continuity is clear from
the estimate. The continuous extension is possible as M<1

a is dense subset of M
on the L1-topology. The monotonicity is proven by Lemma 11 and the fact that if
x, y ∈ Ma and x(q) ≥ y(q) for every q ∈ [0, 1], then max{0, y(q) − x(q)} = 0.
The property is extended to M by continuity. �

4.4. The Singular Case X = 1

When introducing the REM, we noticed that the case x = 1 was singular
as far as the intensity measure is concerned. However, it is necessary in the SK
model theory to consider functionals on GREM’s whose last level of splitting
consist formally of REM(1). These GREM’s correspond to elements of Ma not
in M<1

a . Using L1-continuity, we are able to obtain an expression for Pψ,g and its
differentiation formulas (9), (10) and (13) evaluated at these singular GREM’s.

Let x ∈ Ma with k atoms at {ql} and qk < 1. Then x /∈ M<1
a . Consider xε ∈

M<1
a with xε(ql) = x(ql ) for 1 ≤ l < k, xε(qk) = 1 − ε and xε(qk+1) = 1. Clearly,

xε → x in L1(g′(q)dq) as ε goes to 0. Applying quasi-stationarity to a REM(1 −
ε) with shift eψ(κα (1)), we pick up the factor Exε [e(1−ε)ψ(κα(1))|Fqk ]1/1−ε which
simply becomes in the limit : Exε [eψ(κα(1))|Fqk ] =: eψqk (κα(k−1)(qk )). One applies L1-
continuity and the dominated convergence theorem to Pψ,g(xε) to get

Pψ,g(x) = Ex

[
log

∑
α(k−1) ξα(k−1)eψqk (κα(k−1)(qk ))

∑
α(k−1) ξα(k−1)

]
.

The cases ψ(η) = log cosh(βη + h) and ψ(η) = βη are again special as

eψqk (κα(k−1)(qk )) := Ez

[
eψ(z

√
g(1)−g(qk )+κα(k−1)(qk ))

]
= e

β2

2 (g(1)−g(q))eψ(κα(k−1)(qk ))

and ψ is retrieved after integration. In these cases,

Pψ,g(x) = β2

2
(g(1) − g(q)) + Ex

[
log

∑
α(k−1) ξα(k−1)eψ(κα(k−1)(qk ))

∑
α(k−1) ξα(k−1)

]
. (15)

In particular, if k = 1, i.e. x has a single atom sitting at q:

Pψ,g(x) = β2

2
(g(1) − g(q)) + Ex

[
ψ(κα(0)(q))

]

= β2

2
(g(1) − g(q)) +

∫

R

e− z2

2√
2π

ψ(z
√

g(q))dz (16)
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which, not surprisingly, resembles the high-temperature solution of the SK model.
The derivative formulas (9), (10) and (13) are retrieved by applying the

derivative to the expression (15). The formulas hold by replacing κ̃i (1) by κ̃i (qk).
As an example, we compute ∂qkPβ,h(x):

∂qkPβ,h(x) = − g′(qk)
β2

2
+ g′(qk)

β2

2
Ex

[
(ψ ′′ + ψ ′2)(κ̃1(qk))

]

− g′(qk)
β2

2
Ex

[
ψ ′(κ̃1(qk))ψ ′(κ̃2(qk))χq12=qk

]

= − g′(qk)
β2

2
Ex

[
(ψ ′)2(κ̃1(qk))χq12=qk

]
(17)

where we used the differentiation formula (25) in the first equality and the identity
ψ ′′ + ψ ′2 = 1 in the second.

5. THE AS2-VARIATIONAL PRINCIPLE AND THE PARISI FORMULA

The AS2 variational principle expresses the pressure of the SK model in the
thermodynamic limit PSK (β, h) as an optimization problem over random overlap
structures (2,3):

PSK (β, h) = lim
M→∞

inf
{µROSt}

G M (β, h, µ) (18)

where µ is the probability measure of a ROSt (ξ, Q). The functional G M is given
by

G M (β, h, µ) := 1

M
Eµ

[
log

∑
α ξα

∏M
i=1 2 cosh(βηi

α + h)
∑

α ξα

∏M
i=1 eβκ i

α

]

where ηi and κ i , i = 1, . . . , M , are independent copies of the cavity field and of
a gaussian field with covariance function q2/2.

As we noticed previously, the RPC’s form a particularly interesting class
of ROSt’s due to the ultrametric structure of the overlap matrix and the quasi-
stationarity property. In this section, we study the AS2 variational principle of
Eq. 18 restricted to the class of RPC’s. First, we show that the restricted variational
problem reduces to the Parisi formula. Then, we rederive the Almeida-Thouless
line which yields sufficient condition for the minimizer of the variational problem
not to be a single atom. For this, we follow the idea of Toninelli but we explicitly
use the RPC structure underlying the functionals.



Spin Glass Computations and Ruelle’s Probability Cascades 971

5.1. The Parisi Formula

The Parisi formula for the pressure of the SK model was proven by Talagrand
in Ref. 13.

Theorem 13 (The Parisi Formula).

PSK (β, h) = inf
x∈Ma

{
log 2 + P par

β,h (x) − β2

2

∫ 1

0
qx(q)dq

}
.

It is remarked in Refs. 2 and 3 that the Parisi formula is exactly the AS2

variational problem restricted to the class of RPC’s. To establish this connection,
we start by noting that the limit M → ∞ in Eq. (18) is no longer needed when we
deal with RPC’s.

Proposition 14 (Variational Principle over the class of GREM’s). Let µ

be a GREM parametrized by x ∈ M<1
a . Then, for any M ∈ N, G M (β, h, µ) =

G1(β, h, µ) and

Gβ,h(x) : = G1(β, h, µ)

= Ex

[
log

∑
α ξα2 cosh(βηα(1) + h)∑

α ξα

]
− Ex

[
log

∑
α ξαeβκα (1)

∑
α ξα

]
.

The variational problem of Eq. (18) restricted to GREM’s reduces to

lim
M→∞

inf
{µGREM}

G M (β, h, µ) = inf
x∈Ma

Gβ,h(x).

Proof: It suffices to note that each of the M independent copy of the fields
contributes the same factor to the pressure. This is done using Eq. (7). �

Note that Gβ,h(x) is the difference of two RPC functionals with ψ(η) =
log cosh(βη + h), g(q) = q and ψ(κ) = βκ , g(q) = q2/2 respectively. The Parisi
formula is retrieved from the AS2 variational principle on RPC’s by using
Theorem 6 and Proposition 7 for these two functionals:

Proposition 15 (The Parisi Formula with RPC’s).

PSK (β, h) = inf
GREM(x)

Gβ,h(x). (19)

As Gβ,h is the difference of two L1-continuous functionals by Theorem 12,
it is itself L1-continuous and can be extended continuously to M. Therefore we
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can rewrite Eq. (19) as

PSK (β, h) = min
x∈M

Gβ,h(x) (20)

becauseM is compact in the L1-topology (recall that the L1-topology is equivalent
to the weak topology. See Appendix A). The question of the uniqueness of the
minimizer of the Parisi formula was raised in Ref. 10, 14 but remains open.

5.2. An Example of Calculation: The Almeida–Thouless Line

It is now well known that the minimizer of the variational principle for the
SK model is an atomic measure with a single atom when β, as a function of h, is
small enough. (1,9) This is referred to as the high-temperature solution of the SK
model. Moreover, it was proven by Toninelli that this solution cannot hold beyond
the so-called Almeida-Thouless line. (15) In this section, we rederive this sufficient
condition following Toninelli in spirit, but relying heavily on the RPC structure.
In doing so, we hope to illustrate the convenient features of the RPC formalism.2

First, we remark that the stationarity conditions of the optimization problem
(20) ∂qi Gβ,h(x) = 0 for i = 0, 1, . . . , k yield self-consistency equations:

Ex [tanh(βη̃1(1) + h) tanh(βη̃2(1) + h)|q12 = qi ] = qi .

This is a consequence of the definition of Gβ,h and Proposition 8. In the case
of a single atom, we get the self-consistency equation for the high-temperature
solution from Eq. (17)

Ez

[
tanh2(βz

√
q + h)

] = q.

We denote a solution to the self-consistency equation q̄ = q̄(β, h). This solution
is unique in the case β < 1 and h = 0 and in the case h �= 0 (see e.g. Ref. 9).

Fix β > 0 and h ∈ R. The high-temperature solution corresponds to the
infimum of Gβ,h over the subset of Ma consisting of measures with a single atom.
Note that this set is compact so the infimum is attained. Let x∗ ≡ x∗(β, h) be the
minimizer. The only atom of x∗ must be located at q̄ , the solution to the self-
consistency equation. The idea for deriving the the Almeida-Thouless condition
is to show that, if β and h are such that

β2
∫

R

e−z2/2

√
2π

cosh−4(βz
√

q̄ + h) > 1,

then there exists an element of Ma with two atoms such that Gβ,h evaluated at that
element is smaller than Gβ,h(x∗). This implies that the high-temperature solution

2 It was recently proven by Guerra that the high-temperature solution actually holds up to the Almeida-
Thouless line. This had been rigorously established only in the case h = 0. (8)
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cannot hold for the optimization problem of Eq. 20 in this region of the plane
(β, h).

Let us construct such an element. Pick 0 ≤ m ≤ 1 and q̄ ≤ r ≤ 1. Let x∗
m,r be

the atomic measures with atoms at q̄ and r with x∗
m,r (q̄) = m and x∗

m,r (r ) = 1. Note
that x∗

m,q̄ = x∗. As Gβ,h(x∗
m,r ) is continuously differentiable in m on 0 < m < 1

for r > q̄ , we have

Gβ,h(x∗) = Gβ,h(x∗
m,r ) +

∫ 1

m
∂m ′ Gβ,h(x∗

m ′,r )dm ′. (21)

From Eq. (21), we see that Gβ,h(x∗
m,r ) < Gβ,h(x∗) if r and m are such that

∂m ′ Gβ,h(x∗
m ′,r ) > 0 (22)

for m ≤ m ′ < 1. To get this inequality, we follow(15) and expand ∂m Gβ,h(x∗
m,r )

around q̄

∂m Gβ,h(x∗
m,r ) = ∂m Gβ,h(x∗

m,r )
∣∣∣
r=q̄

+ (r − q̄)∂r∂m Gβ,h(x∗
m,r )

∣∣∣
r=q̄

(23)

+ (r−q̄)2

2 ∂2
r ∂m Gβ,h(x∗

m,r )
∣∣∣
r=q̄

+ O
(
(r − q̄)3

)
.

The remainder term is bounded (this can be checked using the gaussian differen-
tiation formula to calculate the third derivative).

The first term of the expansion is 0 by Proposition 10 as the integral involved
in the differentiation formula is from q̄ to r . The second term vanishes too as
we retrieve the self-consistency equation for q̄ by differentiating in r the integral
expression for ∂m Gβ,h(x∗

m,r )

∂r∂m Gβ,h(x∗
m,r )

∣∣∣
r=q̄

= Ex∗
m,r

[tanh(βη̃1(r ) + h) tanh(βη̃2(r ) + h)|q12 = qi ] − r
∣∣∣
r=q̄

= 0.

Therefore to prove (22), it suffices to find conditions for which

∂m∂2
r Gβ,h(x∗

m,r )
∣∣∣
r=q̄

> 0. Equation (11) is useful to compute ∂2
r Gβ,h(x∗

m,r ). From

Theorem 2, the matrices Q3 and Q4 with Px∗
m,r

(Q3) �= 0 and Px∗
m,r

(Q4) �= 0 are

Px∗
m,r

(q12 = r ) = 1 − m

Px∗
m,r

(q12 = r, q23 = r ) = (2 − m)(1 − m)

2

Px∗
m,r

(q12 = r, q34 = r, q13 = r ) = (3 − m)(2 − m)(1 − m)

6

Px∗
m,r

(q12 = r, q34 = r, q13 = q̄) = m(1 − m)2

6
.
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The reader can check that all missing overlaps qi j of the matrices Q3 and Q4 in
the above events are determined by ultrametricity. For example, if q12 = r, q23 = r
then q13 = r . From the probabilities above, one can see that, when applying the
derivative ∂m directly to ∂2

r Gβ,h(x∗
m,r ) and taking the limit m → 1−, only the terms

coming from the derivative of the factor 1 − m do not vanish. Thus, one gets the
remaining terms

lim
m→1−

(
∂2

r ∂m Gβ,h(x∗
m,r )

∣∣∣
r=q̄

)
= − β2

2
(1 − β2

Ex∗
[
1 − 2 tanh2(β(η̃(q̄) + h))

+ tanh4(β(η̃(q̄) + h))
]
)

= − β2

2

(
1 − β2

Ex∗
[
cosh−4(β(η̃(q̄) + h))

])
(24)

where we have used the fact that x∗
m,r

∣∣∣
r=q̄

= x∗. Hence by the Taylor’s expansion

(23) and the Eq. (24), if β and h are such that

β2
Ex∗

[
cosh−4(β(η̃(q̄) + h))

] = β2
∫

R

e−z2/2

√
2π

cosh−4(βz
√

q̄ + h)) > 1,

we can pick m close enough to 1 and r close enough to q̄ so that the inequality
(22) holds. This yields the desired sufficient condition for the high-temperature
solution not to hold.

Appendix A. Topology on M
The weak, vague and weak-* convergences correspond on the space of proba-

bility measuresM as the measures are on a compact of R. Moreover, any sequence
is tight. Therefore, the weak topology is determined by the weak convergence.

In studying the functionals on M, we are led to consider the topology on
M induced by the L1([0, 1], g′(q)dq)-norm on the distribution functions of the
elements ofMwhere g is a strictly increasing function in C1([0, 1]) with g(0) = 0.
It turns out that all these norms induce topologies on M that are equivalent to the
weak topology.

First, we claim that the L1(g′(q)dq)-topology is equivalent to the L1(dq)-
topology on the space M. Clearly, ‖ · ‖L1(g′(q)dq) ≤ maxq g′(q)‖ · ‖L1(dq). On the
other hand, the following estimate holds for any δ > 0:

‖ · ‖L1(dq) ≤ 1

δ
‖ · ‖L1(g′(q)dq) + Leb{q ∈ [0, 1] : 0 ≤ g′(q) < δ}

where Leb stands for the Lebesgue measure. We used the fact that the distribution
functions are bounded above by 1 and below by 0 to get the second term. As
g is strictly increasing, we have that, for any ε > 0, there exists δ(ε) such that
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Leb{q ∈ [0, 1] : 0 ≤ g′(q) < δ} < ε. Let xγ be a net of distribution functions on
[0, 1] that converges in the L1(g′(q)dq)-norm. To see that xγ also converges in
the L1(dq)-norm, it suffices to see that for δ arbitrary small but fixed, one can
also make the first term of the r.h.s. of the above estimate arbitrary small using the
convergence in the L1(g′(q)dq)-norm.

The equivalence with the weak topology is a direct consequence of the fact
that the L1(dq)-norm metrizes the weak topology on M (see Ref. 16).

Appendix B. Gaussian Differentiation Formulas

The differentiation of expectations of gaussian variables whose covariance
depends on a parameter is facilitated by the following result which can be seen as
an extension of the Wick’s formula or simply gaussian integration by parts.

Proposition 16 (Refs. 2 and 3). Consider a gaussian vector κ = (κi , i ∈ N) for
which the covariance matrix {ci j (t)} depends on a parameter t ∈ [0, 1]. Assume
ci j ∈ C1([0, 1])). We write Et for the expectation over κ . Let φ : R

N → R in
C2(RN ) whose derivatives multiplied by e−ε|x |2 are bounded functions for any
ε > 0. Then

d

dt
Et [φ(κ)] = 1

2

∑

i, j

c′
i j (t)Et

[
∂κi ∂κ j φ(κ)

]
.

The proof of the proposition is easy to carry for polynomials (this case is the usual
Wick’s formula). For the general case, we refer to (3) for a proof using the Fourier
transform.

In the case φ(κ) = log
∑

α ξαeψ(κα ) for a set of weight {ξα}, the formula
becomes

d

dt
Et [φ(κ)] = 1

2

∑

α

c′
α,α(t)Et

[
ψ ′′(κα) + ψ ′2(κα)

] ξαeψ(κα )

∑
α ξαeψ(κα )

(25)

− 1

2

∑

α,α′
c′
α,α′ (t)Et

[
ψ ′(κα)ψ ′(κα′)

] ξαξα′eψ(κα)eψ(κα′ )
∑

α,α′ ξαξα′eψ(κα)eψ(κα′ ) .

It is possible to get higher-order derivatives by just applying the above gaussian
differentiation formula successively. As an example, if the covariance ci j depends
linearly on two parameters s and t , ci j = ci j (s, t), then applying the formula (16)
twice yields

∂s∂tEs,t [φ(κ)] = 1

4

∑

i, j,k,l

∂sci j∂t ci j Es,t

[
∂κi ∂κ j ∂κk ∂κl φ(κ)

]
. (26)
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